Mathematics

PROOF OF A SPECIAL CASE OF THE YELTON-GAINES CONJECTURE ON ISOMORPHIC DESSINS

<u>Claudia Raithel</u>¹, R. Perlis*², Univeristy of Michigan- Ann Arbor¹, Department of Mathematics, Ann Arbor, MI 48109, Louisiana State University², Department of Mathematics, Baton Rouge, LA 70803, perlis@math.lsu.edu

Let (ρ_0,ρ_1) and (ρ'_0,ρ'_1) be two ordered pairs of permutations in S_n and let t be a divisor of n. The Yelton-Gaines conjecture states that if at least one of these four permutations is a product of n/t disjoint t-cycles, and if there is a strong isomorphism (definition below) $\phi:\langle \rho_0,\rho_1\rangle \to \langle \rho'_0,\rho'_1\rangle$ between the two subgroups of S_n generated by the elements in each ordered pair, then there is a fixed permutation τ in S_n that simultaneously conjugates ρ_i to ρ'_i for i=0,1. The conclusion of this conjecture can be restated to say that the two $dessins\ d'enfants$ corresponding to the two ordered pairs are isomorphic.

A proof of this conjecture is given in the case in which all of the initial four permutations are fixed-point-free involutions.